Americium

Images

Image

Attribution: None

Animated Americium

History

Americium was the fourth synthetic transuranic element to be discovered and was named after the continent of North America by analogy to its lighter lanthanide homologue, europium, which was named after Europe, its continent of discovery. Americium was made by Glenn Seaborg, Ralph James, Leon Morgan, and Albert Ghiorso late in 1944 at the wartime metallurgical laboratory at the University of Chicago. It was made as the result of successive neutron capture reactions by plutonium isotopes in a nuclear reactor. The product element was quite difficult to separate based on its anticipated properties, which were incorrect as it turned out. Unlike the lighter previously discovered transuranium elements placed in the main block of the periodic table, americium behaved chemically like the lanthanide series of elements. It exhibited, for example, the trivalent state as the most stable in aqueous solutions. This behavior and the similar behavior of the newly discovered element, curium, prompted Glenn Seaborg to boldly and radically revise the periodic table and create the actinide series of elements.

The first americium isotope identified was that of 241Am, which has an alpha decay half-life of 432.2 years to daughter neptunium-237. The initial discovery was classified as secret as part of the Manhattan Project during World War II, but the discovery was later declassified. Seaborg announced the discovery of elements 95, americium 96, and curium on the U.S. children’s radio show,"The Quiz Kids" five days before his planned presentation at an American Chemical Society meeting in November 1945. His announcement resulted when one of the young listeners asked whether any new transuranium element beside plutonium and neptunium had been discovered.   

Uses

There are many commercial applications for americium isotopes. Americium-241 has been used as a portable source of both gamma rays and alpha particles for a number of medical and industrial uses. The 60-keV gamma ray emissions from 241Am in such sources can be used for indirect analysis of materials in radiography and X-ray fluorescence spectroscopy, as well as for quality control in fixed nuclear density gauges and nuclear densometers. For example, americium has been employed to gauge glass thickness to help create flat glass. Americium-241 is also suitable for calibration of gamma-ray spectrometers in the low-energy range, since its spectrum consists of nearly a single gamma peak. Americium-241 is also used as the ionization source in commercial smoke detectors. Several unusual applications, such as a nuclear battery or fuel for space ships with nuclear propulsion, have been proposed for the isotope 242mAm, but they are as yet hindered by the scarcity and high price of this isomer.

General Info

AtomicNumber
95
Symbol
Am
Name
Americium

Atomic Info

Appearance
AtomicWeight
[243]
Color
545CF2
ElectronicConfiguration
[Rn] 5f7 7s2
ElectronegativityInPauling
1.3
AtomicRadiusInPM
IonRadiusInPM
126 (+2)
VanDerWaalsRadiusInPM
IEinKJmol
578
EAinKJmol
OxidationStates
2, 3, 4, 5, 6
StandardState
solid
BondingType
metallic
MeltingPoint
1449
BoilingPoint
2284
Density
13.67
State
Actinide
DiscoveredYear
1944