Samarium

Images

Image

Attribution: images-of-elements.com

Animated Samarium

History

Discovered spectroscopically by its sharp absorption lines in 1879 by Lecoq de Boisbaudran in the mineral samarskite, named in honor of a Russian mine official, Col. Samarski.

Sources

Samarium is found along with other members of the rare-earth elements in many minerals, including monazite and bastnasite, which are commercial sources. It occurs in monazite to the extent of 2.8%. While misch metal containing about 1% of samarium metal, has long been used, samarium has not been isolated in relatively pure form until recently. Ion-exchange and solvent extraction techniques have recently simplified separation of the rare earths from one another; more recently, electrochemical deposition, using an electrolytic solution of lithium citrate and a mercury electrode, is said to be a simple, fast, and highly specific way to separate the rare earths. Samarium metal can be produced by reducing the oxide with lanthanum.

Uses

Samarium, along with other rare earths, is used for carbon-arc lighting for the motion picture industry. SmCo5 has been used in making a new permanent magnet material with the highest resistance to demagnetization of any known material. It is said to have an intrinsic coercive force as high as 2200 kA/m. Samarium oxide has been used in optical glass to absorb the infrared. Samarium is used to dope calcium fluoride crystal for use in optical lasers or lasers. Compounds of the metal act as sensitizers for phosphors excited in the infrared; the oxide exhibits catalytic properties in the dehydration and dehydrogenation of ethyl alcohol. It is used in infrared absorbing glass and as a neutron absorber in nuclear reactors.

Isotopes

Twenty one isotopes of samarium exist. Natural samarium is a mixture of several isotopes, three of which are unstable with long half-lives.

General Info

AtomicNumber
62
Symbol
Sm
Name
Samarium

Atomic Info

Appearance
AtomicWeight
150.36(2)
Color
8FFFC7
ElectronicConfiguration
[Xe] 4f6 6s2
ElectronegativityInPauling
1.17
AtomicRadiusInPM
IonRadiusInPM
122 (+2)
VanDerWaalsRadiusInPM
IEinKJmol
545
EAinKJmol
-50
OxidationStates
2, 3
StandardState
solid
BondingType
metallic
MeltingPoint
1345
BoilingPoint
2076
Density
7.35
State
Lanthanide
DiscoveredYear
1853